点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:500快三_500快三
首页>文化频道>要闻>正文

500快三_500快三

来源:500快三0780-08-17 17:48

  

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

500快三

2023,世界期待更多的正能量******

  国际观察|2023,世界期待更多的正能量

  新华社北京1月5日电(记者刘赞)2022年,世界动荡不安:美国四处拱火浇油,乌克兰危机延宕难解;新冠疫情持续,奥密克戎毒株成为全球流行的主要毒株;通货膨胀、粮食危机、能源安全问题复杂严峻,世界经济复苏迟滞乏力;气候变化危害日益凸显,气候变化谈判举步维艰……

  2023年,世界充满悬念:乌克兰危机能结束吗?世界卫生组织会不会宣布新冠大流行终结?世界经济能否摆脱衰退阴影?美国政局变化有哪些外溢影响?亚太地区热点问题会不会持续升温?气候变化谈判又能否取得新进展?

  悬念一:乌克兰危机能结束吗?

  2022年2月24日,俄罗斯对乌克兰发起特别军事行动,乌克兰危机升级。以美国为首的西方国家不断对乌提供军事和经济援助,使这场冲突变成了持久战。与此同时,美国及其盟友对俄实施规模空前的严厉制裁,但未能击垮俄经济。

  目前,俄乌两军基本处于相持状态。由于双方立场差距巨大,短期内难以通过谈判化解危机。美国继续拱火浇油,日前再次宣布对乌追加18.5亿美元军援,其中包括“爱国者”防空导弹系统。美国国会最近还通过2023财年综合拨款法案,其中包括高达450亿美元的援乌资金。俄罗斯近期则宣布,计划将俄军规模从115万人扩充至150万人,释放出加强军事力量的信号。

  2023年,这场危机是走向终结,还是进一步升级,目前难以预料。西方国家能否承受持续对乌援助给本国经济和国防带来的巨大压力,将是决定局势走向的一个重要因素。

  悬念二:新冠大流行能终结吗?

  过去一年,变异新冠病毒奥密克戎毒株成为全球流行的主要毒株。与此前流行的毒株相比,其传染性更强,具有多个亚型,在世界各国引发一波波新的疫情高峰。不过,奥密克戎的致病力明显减弱,感染奥密克戎导致的重症率和死亡率显著下降,这也促使世界各国逐渐调整防疫政策。

  世界卫生组织总干事谭德塞不久前表示,希望在2023年某个时候可以宣布新冠疫情不再构成全球卫生紧急事件,世卫组织紧急委员会1月将开会讨论其判断标准。

  面对抵御新冠病毒的战役,全球科学家在不懈寻求下一代疫苗、抗病毒药物等新武器,随着新冠疫苗和药物的研发取得进展,人类必将拥有越来越多对付病毒的武器,构筑起抵御新冠病毒的坚盾。

  悬念三:世界经济能摆脱衰退阴影吗?

  2022年,世界经济困难重重,特别是通货膨胀困扰很多国家。以美国为首的西方国家此前为应对新冠疫情、刺激经济长时间施行超宽松货币政策,为通胀飙升埋下祸根。乌克兰危机升级后,西方对俄制裁使得原本就被疫情所扰乱的国际供应链进一步受阻,能源、粮食价格高企进一步推高通胀,欧美多国物价涨幅创下40年来最高纪录。

  为应对通胀,美联储快速大幅加息,导致其他经济体货币大幅贬值,加剧其输入性通胀。不少国家被迫跟随美国加息步伐,引发经济衰退担忧。

  国际货币基金组织2022年10月发布的《世界经济展望报告》预计,2023年全球经济增速为2.7%,较7月的预测值下调0.2个百分点,全球经济面临巨大下行风险。

  不过,随着累积需求释放和政策效应叠加,中国经济将呈现明显复苏增长势头,这将为世界经济带来持续动力、机遇和信心。

  悬念四:美国政局变化将产生哪些外溢影响?

  2022年,美国民主、共和两党继续恶斗,在堕胎权、控枪、移民等一系列问题上尖锐对立。在11月的中期选举中,共和党夺取国会众议院控制权,民主党则以微弱优势保住参议院控制权。

  在两党瞄准2024年总统选举、新一届国会两院“分裂”的情况下,共和党预计将在2023年对拜登政府发起更多挑战,其现行的内外政策将面临巨大不确定性。

  共和党内部斗争也可能趋于激烈。由于打算参加下届总统选举的前总统特朗普在中期选举中发挥的作用不佳,共和党内温和派可能考虑放弃对他的支持。同时,共和党在众议院的席位优势不大,使得党内极端势力或将有更多机会左右该党在国会的立场。

  在政治极化、党争加剧的背景下,美国政局走向具有较大不确定性,这将影响美国的对外政策,进而对世界造成复杂影响。

  悬念五:亚太地区热点问题会持续升温吗?

  2022年,在美国搅局之下,亚太多国面临不同程度震荡,地区局势局部升温。

  美军撤离一年后,阿富汗仍然面临严峻安全形势和严重人道主义危机。在朝鲜半岛,美国与韩国多次举行大规模联合军演,朝鲜发射导弹予以反制,半岛紧张局势不断升级。在美国支持下,日本最近正式通过新版《国家安全保障战略》等3份安保政策文件,提出打造所谓“反击能力”即事实上的攻击能力等政策主张,并将在未来5年大幅增加军事开支,引发国际社会担忧。

  可以预见,美国会持续在亚太“拉小群”、搞事情,2023年的亚太恐怕难以平静。

  悬念六:气变谈判能取得新进展吗?

  气候变化是人类面临的重大挑战。2022年,从巴基斯坦特大洪灾造成1000多人死亡,到欧洲夏季高温干旱造成泰晤士河源头干涸、莱茵河几乎断航,再到最近冬季风暴几乎席卷全美造成数十人死亡……一系列极端天气事件提醒人类,应对气候变化刻不容缓。

  2022年11月,《联合国气候变化框架公约》第二十七次缔约方大会(COP27)在埃及沙姆沙伊赫举行。发达国家在向发展中国家提供资金和技术支持等问题上依然态度消极,其先前承诺的每年1000亿美元资金支持仍未兑现。作为会议成果的一大亮点,本次大会最终同意建立损失与损害基金,旨在向最脆弱和受气候变化影响最严重的国家提供财政援助,但这只是第一步,基金形式、出资国家、分配方式、援助对象等关键问题被留到2023年继续谈判。

  当前,发达国家经济状况总体不佳,加上能源供应紧张导致部分发达国家重新转向煤炭发电,发达国家自身减排意愿以及为发展中国家减排提供支持的意愿都在下降。在这样的形势下,2023年在阿联酋迪拜举行的COP28能否就上述关键问题取得新进展值得关注。

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 原配捉奸反被告,现在"老王"这么牛?

  • 又失误!德赫亚毁了马塔的生日趴

独家策划

推荐阅读
500快三《创新创业创造云讲堂》第四讲上线
2023-12-04
500快三 海军航空兵最强轰6K 攻击范围覆盖美军基地
2024-03-18
500快三法官释法:别把“996”说那么花哨,员工不同意就是违法
2024-04-10
500快三“华春新彩”上元汇文化游园活动在新加坡举行
2023-11-25
500快三 百度回应“李彦宏夫妇或成老赖”:反对恶意炒作
2024-01-28
500快三西藏日喀则 领略高原深处的春耕美景
2023-06-20
500快三透视|北欧的血统 吉利最强轿跑SUV星越
2023-12-20
500快三世园会开幕式晚会彰显中国风范
2024-03-10
500快三聆听习主席新春之声 一起向未来
2023-09-25
500快三加快世界一流师范大学建设 培养新时代卓越教师
2023-11-18
500快三火勇大战裁判判罚引争议: 汤神3次防哈登三分成焦点
2023-09-06
500快三新买奔驰车存在修补痕迹,浙江女车主诉4S店要求退一赔三
2024-01-28
500快三易宪容:三线城市房价如何走
2023-11-01
500快三江西归侨少数民族聚居村年味浓 特色风情引客来
2023-06-06
500快三戴森V11干掉扫地机器人
2023-07-09
500快三拉卡拉创始人回忆雷军投资往事:他只帮忙不添乱
2023-06-25
500快三知否|让全球180万人重见光明的角膜 人人都能捐献吗?
2024-01-16
500快三刘诗诗产子!被吴奇隆低调宠爱的她曾说不想当慈母
2023-09-09
500快三世界最大跨度无砟轨道高铁桥在皖合龙
2023-09-08
500快三娱乐新鲜派|周锐:愿把生活写成歌
2023-08-19
500快三国际足联主席:希望中国成为全球足球强国之一
2023-12-23
500快三中超比埃拉戴帽张10破门 国安4-1一方7连胜破纪录
2023-06-09
500快三苏新平同名艺术展:用艺术重构心灵风景和精神家园
2024-02-24
500快三 2019年第25届沃尔沃中国公开赛
2023-07-16
加载更多
500快三地图